216 research outputs found

    Reconstructing the past:methods and techniques for the digital restoration of fossils

    Get PDF
    During fossilization, the remains of extinct organisms are subjected to taphonomic and diagenetic processes. As a result, fossils show a variety of preservational artefacts, which can range from small breaks and cracks, disarticulation and fragmentation, to the loss and deformation of skeletal structures and other hard parts. Such artefacts can present a considerable problem, as the preserved morphology of fossils often forms the basis for palaeontological research. Phylogenetic and taxonomic studies, inferences on appearance, ecology and behaviour and functional analyses of fossil organisms strongly rely on morphological information. As a consequence, the restoration of fossil morphology is often a necessary prerequisite for further analyses. Facilitated by recent computational advances, virtual reconstruction and restoration techniques offer versatile tools to restore the original morphology of fossils. Different methodological steps and approaches, as well as software are outlined and reviewed here, and advantages and disadvantages are discussed. Although the complexity of the restorative processes can introduce a degree of interpretation, digitally restored fossils can provide useful morphological information and can be used to obtain functional estimates. Additionally, the digital nature of the restored models can open up possibilities for education and outreach and further research

    True colours or red herrings?:colour maps for finite-element analysis in palaeontological studies to enhance interpretation and accessibility

    Get PDF
    Accessibility is a key aspect for the presentation of research data. In palaeontology, new data is routinely obtained with computational techniques, such as finite-element analysis (FEA). FEA is used to calculate stress and deformation in objects when subjected to external forces. Results are displayed using contour plots in which colour information is used to convey the underlying biomechanical data. The Rainbow colour map is nearly exclusively used for these contour plots in palaeontological studies. However, numerous studies in other disciplines have shown the Rainbow map to be problematic due to uneven colour representation and its inaccessibility for those with colour vision deficiencies. Here, different colour maps were tested for their accuracy in representing values of FEA models. Differences in stress magnitudes (ΔS) and colour values (ΔE) of subsequent points from the FEA models were compared and their correlation was used as a measure of accuracy. The results confirm that the Rainbow colour map is not well suited to represent the underlying stress distribution of FEA models with other colour maps showing a higher discriminative power. As the performance of the colour maps varied with tested scenarios/stress types, it is recommended to use different colour maps for specific purposes

    Cowden syndrome - Diagnostic skin signs

    Get PDF
    Cowden syndrome is a rare autosomal dominant familial cancer syndrome with a high risk of breast cancer. The most important clinical features include carcinomas of the breast and thyroid, and hamartomatous polyps of the gastrointestinal tract. There are characteristic mucocutaneous features which allow early recognition of the disease and are generally present before internal malignancies develop. We report on a woman in whom the diagnosis of Cowden syndrome was first made after she had been treated for both breast cancer and melanoma. Copyright (C) 2001 S. KargerAG, Basel

    Neural and endocranial anatomy of Triassic phytosaurian reptiles and convergence with fossil and modern crocodylians

    Get PDF
    Phytosaurs are a clade of large, carnivorous pseudosuchian archosaurs from the Late Triassic with a near cosmopolitan distribution. Their superficial resemblance to longirostrine (long-snouted) crocodylians, such as gharials, has often been used in the past to infer ecological and behavioural convergence between the two groups. Although more than thirty species of phytosaur are currently recognised, little is known about the endocranial anatomy of this clade. Here, we describe the endocranial anatomy (including the brain, inner ear, neurovascular structures and sinus systems) of the two non-mystriosuchine phytosaurs Parasuchus angustifrons (=“Paleorhinus angustifrons”) and Ebrachosuchus neukami from the Late Triassic of Germany based on digital reconstructions. Results show that the endocasts of both taxa are very similar to each other in their rostrocaudally elongate morphology, with long olfactory tracts, weakly demarcated cerebral regions and dorsoventrally short endosseous labyrinths. In addition, several sinuses, including large antorbital sinuses and prominent dural venous sinuses, were reconstructed. Comparisons with the endocranial anatomy of derived phytosaurs indicate that Phytosauria is united by the presence of elongate olfactory tracts and longitudinally arranged brain architecture—characters which are also shared with Crocodyliformes. However, a substantial morphological variability is observed in the cephalic and pontine flexure and the presence of a pineal organ across the different phytosaur species. These results suggest that the endocranial anatomy in Phytosauria generally follows a plesiomorphic pattern, with moderate variation within the clade likely resulting from divergent sensory and behavioural adaptations

    Course and Outcome of Bacteremia Due to Staphylococcus aureus: Evaluation of Different Clinical Case Definitions

    Get PDF
    In a retrospective survey of patients hospitalized in the University Hospital of Basel, Switzerland, the course and outcome of 281 cases of true bacteremia due to Staphylococcus aureus over a 7-year period were analyzed. The main purpose was to evaluate different case definitions. In 78% of cases the source of bacteremia was obvious; vascular access sites (27%) and wounds (10%) were the most common sources. Metastasizing foci were more common in cases of primary vs. secondary bacteremia (P < .001). The incidence of endocarditis was higher in cases in which no portal of entry was defined (P < .03). The overall mortality rate was high at 34% partly because of inappropriate initial antibiotic therapy. With the introduction of an infectious disease service at the hospital, the fraction of misjudged results of blood culture diminished 2.5-fold. Among the differently defined cases, the mortality rate was significantly higher for cases of complicated vs. uncomplicated bacteremia (P < .01), for cases of primary vs. secondary bacteremia (P = .05), and for patients with endocarditis or other secondary foci (P < .001). Since only one methicillin-resistant strain was isolated, multiresistant staphylococci were not a problem in the hospital. Different case definitions allowed the detection of patients at increased risk for complications and death. In the treatment of sepsis with no evident focus, initial antimicrobial therapy should include the use of agents with antistaphylococcal activit

    Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution

    Get PDF
    Temnospondyls were the morphologically and taxonomically most diverse group of early tetrapods with a near-global distribution during the Palaeozoic and Mesozoic. Members of this group occupied a range of different habitats (aquatic, amphibious, terrestrial), reflected by large morphological disparity of the cranium throughout their evolutionary history. A diagnostic feature of temnospondyls is the presence of an open palate with large interpterygoid vacuities, in contrast to the closed palate of most other early tetrapods and their fish-like relatives. Although the function of the interpterygoid vacuities has been discussed in the past, no quantitative studies have been performed to assess their biomechanical significance. Here, we applied finite element analysis, to test the possibility that the interpterygoid vacuities served for stress distribution during contraction of the jaw closing musculature. Different original and theoretical skull models, in which the vacuities differed in size or were completely absent, were compared for their mechanical performance. Our results demonstrate that palatal morphology played a considerable role in cranial biomechanics of temnospondyls. The presence of large cranial vacuities were found to offer the dual benefit of providing additional muscle attachment areas and allowing for more effective force transmission and thus an increase in bite force without compromising cranial stability

    Estimating cranial musculoskeletal constraints in theropod dinosaurs

    Get PDF
    Many inferences on the biology, behaviour and ecology of extinct vertebrates are based on the reconstruction of the musculature and rely considerably on its accuracy. Although the advent of digital reconstruction techniques has facilitated the creation and testing of musculoskeletal hypotheses in recent years, muscle strain capabilities have rarely been considered. Here, a digital modelling approach using the freely available visualization and animation software Blender is applied to estimate cranial muscle length changes and optimal and maximal possible gape in different theropod dinosaurs. Models of living archosaur taxa (Alligator mississippiensis, Buteo buteo) were used in an extant phylogenetically bracketed framework to validate the method. Results of this study demonstrate that Tyrannosaurus rex, Allosaurus fragilis and Erlikosaurus andrewsi show distinct differences in the recruitment of the jaw adductor musculature and resulting gape, confirming previous dietary and ecological assumptions. While the carnivorous taxa T. rex and Allo. fragilis were capable of a wide gape and sustained muscle force, the herbivorous therizinosaurian E. andrewsi was constrained to small gape angles

    Functional niche partitioning in therizinosauria provides new insights into the evolution of theropod herbivory

    Get PDF
    Dietary specialization is generally considered to be a crucial factor in driving morphological evolution across extant and extinct vertebrates. The ability to adapt to a specific diet and to exploit ecological niches is thereby influenced by functional morphology and biomechanical properties. Differences in functional behaviour and efficiency can therefore allow dietary diversification and the coexistence of similarly adapted taxa. Therizinosauria, a group of secondarily herbivorous theropod dinosaurs, is characterized by a suite of morphological traits thought to be indicative of adaptations to an herbivorous diet. Digital reconstruction, theoretical modelling and computer simulations of the mandibles of therizinosaur dinosaurs provides evidence for functional niche partitioning in adaptation to herbivory. Different mandibular morphologies present in therizinosaurians were found to correspond to different dietary strategies permitting coexistence of taxa. Morphological traits indicative of an herbivorous diet, such as a downturned tip of the lower jaw and an expanded postdentary region, were identified as having stress mitigating effects. The more widely distributed occurrence of these purported herbivorous traits across different dinosaur clades suggests that these features also could have played an important role in the evolution and acquisition of herbivory in other groups
    • …
    corecore